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An analysis of the steady-state forced oscillatons of an elastically hereditary 
single-mass system with three terms included in the Volterra--Fr~chet multiple-in- 
tegral relations [I] makes it possible to determine the fundamental laws govern- 
ing the frequency dependence of the amplitude and phase [2]. Also of interest 
is the analogous problem with all terms included in the multiple-integral rela- 
tions. The authors realize this possibility in the general case. Separable 
weighting functions consisting of products of exponential relaxation kernels with 
a separated instantaneous part are considered as a concrete example. 

i. For a one-dimensional oscillator driven by an external monoharmonic force the equa- 
tion of motion in the coordinate is written in the form 

Mi'-+-f(x ,  ~ = b  cos or, (1.1) 

where M is the mass, f(x, 3) is the restoring force of the system, b is the amplitude of the 
driving force, ~ is the cyclic frequency, and t is the time. 

According to the equivalent linearization method [3], Eq. (i.i) can be rewritten 

] V i x + ~ - X ~ x + k x + e ( x ,  x)=b cos ~t. (1.2)  

Here r ~) denotes the error due to replacement of the nonlinear function f(x, ~) by the 
equivalent linear viscoelastic part: 

~ ,  ~)=f(x, i)-k~-~-~. (1.3) 

The steady-state solution of Eq. (1.2) for ~(x, i) = 0 

x=a cos 0, 9=~t--~ 

enables us to find the amplitude a and the tangent of the phase shift angle: 

i 
a = b [~ § (k -- M~2)21 2; tg ? = ~ (k -- M~)-i. 

(1.4) 

The coefficients k and q are evaluated from the condition for minimum error c(x, ~), 
as expressed by the following two equations averaged over the oscillation period [4]: 

/ o �9 o \  / •  
\ ~  [~ (~, x)l-/ = o; \ o , 1  [~ (z' ~)12> =0"  

(i, 5) 

(1.6) 
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This optimality criterion for k and h is best 
placed by its linearized equivalent (1.2). 

The substitution of (1.3) and (1.4) into 
nonlinear properties of the system: 

[5] when the nonlinear equation (i.i) is re- 

(1.6) yields expressions accounting for the 

2 ~  2 ~  

k =  t ](a,O) cosOdO, ~ - - - -  aa. aa.  / (a, 0) sin 0d0. 
0 0 

(1.7) 

The quantity k plays the part of the dynamic modulus, and ~ is proportional to the area of 
the hysteresis loop. As a measure of the internal friction we determine the reciprocal 
quality factor Q_I~ 

T 

Q - I  AW 2_ f x" cos  b sin t ~ _  q 2X[V - -aka2  "~ co ld t - -  ak k " 
0 

In calculating the elastic strain energy W here we use the dynamic modulus. The reciprocal 
quality Q-I coincides with the tangent of the phase shift angle, tan ~ in the quasistatic 
case, i.e., for M = 0. 

2. The given analytical method can be applied to the elastically hereditary system 

ix, or 

f (x, 4 = w t" g,, (t,, t , , ) / I  x (t dt . 
n=t  0 i--I 

( 2 . 1 )  

By substituting (2.1) into (1.7) with regard for (1.4) we can find the equivalent 
linearization coefficients. 

Restricting the problem to separable [6] weighting functions for simplicity, 

n 

g,, (6 . . . . .  t.) = ] [ g(6); g ( t )  - -  Eo~ [6 ( t )  - -  ~,~R (t)l, 
~=l (2.2) 

ve -:-- (E~  - -  Eo) E Z  l, 

where R(t) is the relaxation kernel, 6(t) is the delta function, and E , Eo are the nonre- 
laxed and relaxed values of the elastic modulus, we obtain 

/ ~ - g ' ( o ) ) F  I, :~;. o; t - - f  =g'(co)  " " = ' "  y ( l  : y ) '  

2 Y -= l~ '~ _.  a~ ]g (,o)lt q : : -  g"(c~ ,.~/)' 
(2.3) 

Here F(I, 3/2; 2; 1-y =) is a hypergeometric function [7], and 

oc 

g ( ( o ) ~  t g ( t ) e x p ( - - i o ) t ) d t ;  
b 

g' (o)) - -Reg(co)  g " ( o ) ) ~ - - I m  g(r 

( 2 . 4 )  

From the first relation (1.5) we obtain an expression for the amplitude: 

- -  - -  , 2 - ) y  - - ~ C  = 0 ,  p(g)  =_-_- o,y~ § ()_~y~ _~ (b"-C f 4  .o2- _ (_)~)f -~-(e"-C c_)~)f + 4(C ~- A c ' (2.5) 

in which the following notation is introduced: 
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A~E~ig ' (o ) ) ,  C-~ g']g(o))]2; Q~coo)~ 1, (o~o~E==M -~. (2.6) 

Solving Eq. (2.5) for y, we find the amplitude and tangent of the phase shift angle: 

a = E ~ l ~ ~ - - g 2 ) C - 1 ;  t g~ - -  A--~2(y2~y)2--~" (2.7) 

By the obvious inequalities P(0) = -4C < 0, P(1) = 2b2C > 0 and the occurrence of one or 
three sign changes [8] in the system for coefficients of the polynomial P(y) for any values 
of b and ~ it can be verified that Eq. (2.5) has at least one and not more than three roots 
in the interval (0.I). Consequently, the amplitude and phase determined according to (2.7) 
are multiple-valued. This property is typical of nonlinear systems [9]. 

As a concrete example it is instructive to analyze the relxation kernel for a standard 
linear body: 

--i (2.8) 

since for 

oo 

! (x,  ~)  = f g ( r )  F [~ (t - t')] dt' ,  
0 

where 

F b(t) ] = x ( t ) ,  

the steady-state amplitudes have a common point of intersection determined by the "quasires- 
onance" frequency [i0]. 

Thus, setting the derivative of the amplitude with respect to the relaxation time 
equal to zero, we obtain the value of the frequency from (1.5): 

o 
~ ~ l ot--~. (/~ + C )  

~k 
= ~ (a) - -  (2.9) 

Here 

2T~ 

, (.) - ~ .!' <(a cos o)cos o~o, 
0 

(oN -~ EoM 
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The coefficients k and n are evaluated from Eqs. (1.7). 

Substituting the values of k and n from Eqs. (2.3) into (2.9) with regard for 
(2.4), and (2.8), we obtain the expression 

(2.2), 

U 9 o i-=y ( I - -y )  / o! 
o): = o)~ ,s~( ~ + v) ["-:- ,~ 

2 2 l - - i  

2Y z ( 1 - -  v~) z ~-o2"r z_~ 

which depends on the relaxation time r E. Therefore, a common point of intersection of the 
amplitudes does not exist except for a particular form of nonlinearity, which in a special 
case is equivalent to the assumption of similarity of the isochromic fatigue curves [!I], 
in which case the quantity x(t) has the sense of a displacement. The frequency dependence 
of the amplitude and phase shift angle is given in Figs. i and 2, respectively, for the fol- 
lowing numerical values of the parameters: b = i, vr = 0.5. The relaxation times are in- 
dicated alongside the curves. The upper branch of the curve for ~r = = in Fig. 1 tends 
asymptotically to a constant value E -x as fl § ~ and is plotted only in the frequency in- 
terval ~ E [0, 2.5] to avoid overlapping with the curve for T C = 2, the upper branch of 
which is terminated at Q ~ 4 .  

It is evident in Fig. 1 that a common point of intersection of the,amplitude does not 
exist and the amplitudes remain finite for any values of the frequency, including both 
associated elastic cases (rr = 0, Tr = ~). 

In these extreme cases, to obtain the amplitude as a function of the frequency it is 
convenient to use the inverse dependence of the frequency on the amplitude without resorting 
to the solution of Eq. (2.5). Solving Eq. (1.5) for the mass-reactance term, we obtain 

for - r ~ = 0 ,  0) 2 = c o o  2 F l ~ ;  2 ; a 2 E  -~ ; 

+ b 

Hence we infer that the amplitude--frequency curves are obtainable one from the other 
by a change of scale along the a and ~ axes. As aEo + i, aE + I, and a + 0 the values of 
~2 grow indefinitely large. Consequently, as ~ § ~ Eq. (2.5~ always has three roots, 

2 [ l - -aEo ] 
t~y3~Y~->Yl~O;  Y =-- [ l--aEooJ" ( 2 . 1 0 )  

The following limit relations are valid here: 

l im(y~ ,  Y2) = 0; l i m  Y3 ----- t .  ( 2 . 1 1 )  

It can be verified on the basis of expressions (2.10) and (2.11) with allowance for the last 
expression (2.3) that for the associated elastic cases there are three values of the amplitude 
for any sufficiently large frequencies, where 

lEo  - t ,  zs = 0 

0 < a  3 < a  2 ~ a  1 < l E v i  ' "r~= 

and 

l i r a  (a l ,  a2) = / E ~ - ' '  Te = 0 
o,-~= [ e =  i, -r~ 

l i r a  a 8 = O. 
(0~,. oo 
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Inasmuch as for small values of ~ the system of coefficients of Eq. (2.5) has only one 
sign change, there is only one positive root in this case. The frequency above which Eq. 
(2.5) has three positive roots is given by the relation 

I 2 --~ 1 ) o 
T; 2; z, + 72' ~ ; - : -  (m2m22 J" 

Here z, is the root of the equation 

which i s  taken by the change of v a r i a b l e  

z=2~(t+~2) -1 

into the form 

~-6 $3-}- 12-1v~-- 12-1v= O. 

For all intermediate relaxation times 0 < T e < ~ the amplitudes and phases are calculat- 
ed according to Eqs. (2.7). Here the values of y belonging to the interval (0.I) are de- 
termined from Eq. (2.5), the coefficients of which are calculated for each frequency accord- 
ing to Eqs. (2.6) with regard for (2.2), (2.4) and (2.8). 

Thus, the analysis of the steady-state forced vibrations of a nonlinear elastically 
hereditary oscillator by the equivalent linearization method makes it possible to explain 
the principal characteristics of the frequency dependence of the amplitudes and phases of 
the vibrations for different values of the rheologica! parameters. We have shown that even 
for exponential relaxation kernels a common point of intersection of amplitudes does not 
exist as in the linear case [12] or as in the case of a special type of nonlinearity [i0] 
such that the integral operator represents a Hammerstein operator [13], i.e., the product 
of a linear operator and a nonlinear superposition operator. 
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